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1 Introduction

Fundamental questions in quantummechanics are the exis-
tence, spectrum and properties of bound states [1–4]. The
importance of this subject matter for atomic and molecu-
lar physics is obvious. In particle physics it is also of pri-
mary importance. Positronium, heavy quark bound states
such as J/ψ and indeed all quark (anti-quark) bound states
are of interest to physicists and often provide informa-
tion about constituent roles and theoretical models. Res-
onances are a related subject matter, but unlike bound
states they are above threshold and have finite lifetimes,
either because they decay via a weaker interaction, such
as for the flavor changing quark decays, or because they
are “excited” states that eventually de-excite to the ground
state [2].
The main approach to bound states has been the so-

lution of the appropriate non-relativistic wave equation
in the presence of a potential [2–4]. This is perfectly ad-
equate when the solutions yield non-relativistic bound
states. For better precision, their relativistic corrections
can be treated with equations such as the Dirac or Klein–
Gordon equations. However, these relativistic equations
exhibit one very important limitation [5] when used for cal-
culating bound states, related to the Klein paradox [6–10].
For long range interactions, such as the electromagnetic

or gravitational ones, an infinite number of bound states
exist. For short range interactions such as that given by
a Yukawa potential,

VY(r) =−
g2eff
4π

exp[−µr]

r
, (1)
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corresponding to the exchange of a particle of mass µ, only
a finite number of bound states exist if any at all. Indeed
for small mass exchanges (compared to the reduced mass
of the system), numerical calculations by the Schrödinger
equation yield a minimum condition for the existence of
a bound state, i.e.

g2eff
4π
≥ 0.84

µ

m
, (2)

where µ is the exchanged particle mass and m is the re-
duced mass. To the extent that this inequality is valid,
i.e. that the potential is realistic and that the Schrödinger
equation is acceptable, it tells us that as the range of the
interaction falls (µ and hence µ/m increases) the coup-
ling strength must grow as µ/m to permit the existence of
a bound state. However, as the coupling grows, so does, in
general, the binding energy, Eb. For example, in the Bohr
model Eb ∝ α2, with α ≡ g2eff/4π, so that eventually the
Schrödinger equation becomes inappropriate as the bind-
ing energy tends to or exceeds the reduced mass.
If one considers a potential akin to the Yukawa poten-

tial but having the advantage of being solvable exactly [11],
i.e. the Hulthen potential

VH =−
g2eff
4π

2µ

exp[2µr]−1
, (3)

one finds analytically the condition for the single (s-wave)
bound state to exist to be similar to the numerically in-
equality found in (2), i.e.,

g2eff
4π
≥
µ

m
. (4)

For completeness, we should point out that there is a whole
class of Hulthen potentials with µ in the above expression
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substituted by cµ (where c is a positive constant). Our par-
ticular choice (c = 1) is one that shares with the Yukawa
(mass µ) the same first two terms in a Maclaurin series ex-
pansion about r = 0.
Relativistic spinor bound states, by which we mean

any spinor bound states for which relativity plays an im-
portant role, require more care. We can first attempt to
treat these states by including the lowest order relativis-
tic corrections to the Schrödinger equation or by pass-
ing directly to the Dirac equation [1–4]. In either of these
cases, one can demonstrate that as µ increases, relativis-
tic effects automatically increase the effective coupling
constant. We have called this effect the amplification of
the Yukawa coupling [5]. This opens the practical possi-
bility of high mass exchange bound states. However, if
the bound state energy grows with the effective coup-
ling constant, as numerical calculations suggest, then we
will eventual enter the so-called Klein zone E < V0−m.
Conventionally, V0, which is the asymptotic free space
value, is set to zero. Within the Klein zone only oscil-
latory solutions exist everywhere. This is the origin of
the Klein paradox which can be interpreted as a con-
sequence of pair creation [6–10]. This is a positive fea-
ture, if considered an anticipation of field theory, but it
is a problem for the one-particle interpretation of these
equations. Furthermore, the absence of evanescent solu-
tions means the absence of any (discrete spectrum) bound
states.
At this point, one naturally passes to field theory. This

seems promising since one of the greatest successes of
renormalized field theory is the calculation of the Lamb
shift [12]. Unfortunately the very existence of a bound
state, while being a more elementary question, seems much
more difficult to answer in field theory. This is the reason
that one often falls back upon (heuristic) two-body rela-
tivistic equations, albeit inspired by field theory, such as
the Bethe–Salpeter equation [13–15], the Blankenbecler–
Sugar equation [16] or the Gross (spectator) equation [4].
There is, however, one technique, described in detail by
Gross [17], which offers us a very useful tool. This is based
upon the sole consideration of ladder diagrams and works
impressively for small µ/m. Indeed, after introduction of
the scalar model in the next section, we present in Sect. 3
a simplified (zero momentum) calculation (for light mass
exchanges) which exactly reproduces the Hulthen inequal-
ity. In Sect. 4, we consider the opposite limit where µ/m
is very large. We seek the appropriate inequality condition
for the existence of a bound state for this limit and, with
the help of some numerical calculations, this will indeed be
found.
The reasons for our interest in this high mass ex-

change limit is that some physical interactions do in-
deed involve very heavy mass exchanges [2], e.g. the
exchange of the intermediate vector bosons W± and
Z0, and almost certainly of the Higgs particle. In par-
ticular, since the neutrino is now known to have mass
eigenstates [18], it is a legitimate question to ask if the
weak interactions allow for, say, neutrino–lepton bound
states [5]. The above inequalities suggests not, for we
are asking if a bound state can exist with a µ/m ratio

> 1010 for neutrino–electrons (although this ratio could be
much smaller for the heavier leptonic families). However,
these inequalities have been derived from non-relativistic
equations or, as we shall see, from ladder diagrams in
which the assumption of small µ/m is made from the
start. We shall return briefly to this discussion in our
conclusions.

2 The scalar model

Let us consider a scalar model with three different mass
scalars. Two of them represent the incoming system and
have massm1 andm2. They interact only by the exchange
of a third scalar with mass µ. The dimensional coupling
constants are λ1 and λ2 for the particle with mass m1 and
m2, respectively. The one boson exchange diagram gives
the lowest order contribution to the invariant scattering
amplitude,

Mtree(q) = i(−iλ1)(−iλ2)
−i

µ2− q2− iε
=−

λ1λ2

µ2− q2− iε
.

(5)

From the Fourier transform of (5) when q0 = 0 one obtains
the Yukawa potential quoted above. The corresponding
force is attractive (and hence can yield bound states) only
if λ1λ2 > 0. In fact, comparing with the attractive Yukawa
case shows that

g2eff =
λ1λ2

4m1m2
. (6)

Henceforth this is what we shall assume throughout. The
scattering amplitude reduces to a number for forward
scattering,

Mtree(0) =−
λ1λ2

µ2
. (7)

The fourth-order ladder and crossed (ladder) diagrams
are shown in Fig. 1. Not surprisingly, these contributions
modify the Yukawa potential as do all higher order terms.
We shall come back to this discussion in the next sec-
tion. The box and crossed box diagrams are not the
only fourth-order diagrams, but the others can be ab-
sorbed into the dressing of the propagators and vertex
functions. As a consequence of the latter, we expect the
appearance of form factors, which however reduce to
unity for forward scattering. For our purposes it is suf-
ficient to limit our calculations to forward scattering.
Consequently, we will not consider explicitly these other
diagrams [4].
In the center of mass system and for forward scattering

(see Fig. 1), the Feynman rules for the box diagram ampli-
tude yield

M� = iλ21λ
2
2

∫
d4k

(2π)4
1

D1D2D20
, (8)
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Fig. 1. The fourth-order box and crossed box diagrams in
a scalar field model evaluated in the center of mass frame for
scattering in the forward direction

with

D1 = [E1(k)−E1(p)−E2(p)+k0− iε]

× [E1(k)+E1(p)+E2(p)−k0− iε] ,

D2 = [E2(k)+k0− iε] [E2(k)−k0− iε] ,

D0 = [E0(k−p)−E2(p)+k0− iε]

× [E0(k−p)+E2(p)−k0− iε] , (9)

and

E1,2(q) =
√
q2+m21,2 , E0(q) =

√
q2+µ2 .

Evaluating the propagators near threshold (p≈ 0), we find

D1 = [E1(k)−m1−m2+k0− iε]

× [E1(k)+m1+m2−k0− iε] ,

D2 = [E2(k)+k0− iε] [E2(k)−k0− iε] ,

D0 = [E0(k)−m2+k0− iε]

× [E0(k)+m2−k0− iε] . (10)

For the crossed box diagram (see Fig. 1) only the inter-
nal propagator for particle with mass m1 has a different

momentum. Consequently,

M× = iλ21λ
2
2

∫
d4k

(2π)4
1

D×1 D2D
2
0

, (11)

with

D×1 = [E1(k)−m1+m2+k0− iε]

× [E1(k)+m1−m2−k0− iε] . (12)

The box and crossed diagrams contain eight poles each in
the complex k0 plane. Half of these lie below the real axis
and contribute to the integral if we close the contour in
the lower half plane. For the box and crossed diagrams
the residues will be labeled R�0,1,2(k) and R

×
0,1,2(k), re-

spectively. There are only three residues, and not four,
because for forward scattering in the rest frame limit the
two poles in the exchanged particle propagators coincide
and yield the “double pole” residues R�,×0 . Thus, the box
and crossed diagrams give the following fourth-order con-
tribution to the invariant scattering amplitude:

M�+M× = i(−2πi)
λ21λ

2
2

(2π)4

∫
d3k

2∑
s=0

[
R�s (k)+R

×
s (k)

]

=
λ21λ

2
2

2π2

∫ ∞
0

dkk2
2∑
s=0

[
R�s (k)+R

×
s (k)
]
.

(13)

Below, by Es we mean Es(k) and by W and ∆ we mean
m1+m2 and m2−m1, respectively. A simple calculation
shows that the explicit formulas for the residues in the k0
plane for the box and the crossed diagrams are, respec-
tively,

R�1 (k) =
1

4WE1 (E1+m1) [µ2−2m1 (E1+m1)]
2 ,

R�2 (k) =−
1

4WE2 (E2−m2) [µ2+2m2 (E2−m2)]
2 ,

R�0 (k) =
2 (E0−m1)BC+2 (E0+m2)AC−2AB

A2B2C3
,

(14)

with

A= 2E0m1−µ
2 , B =−2E0m2−µ

2 , C = 2E0 ,

and

R×1 =
1

4∆E1 (E1−m1) [µ2+2m1 (E1−m1)]
2 ,

R×2 =−
1

4∆E2 [µ2+2m2 (E2−m2)]
2 ,

R×0 =
2 (E0+m1)BC+2 (E0+m2)A×C−2A×B

A2×B
2C3

,

(15)

with

A× =−
(
2E0m1+µ

2
)
.
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We warn the reader that our choice of labeling of momenta
for the crossed diagram is different from that of Gross [4,
17]. This results in different contributions from the various
crossed poles. Of course, the sum over the poles gives the
same result (see the next section).
Gross conjectures in his classical book on relativistic

quantum mechanics [4] that the inequality condition for
a bound state to exist can be derived by equating the
contributions of the tree and box diagrams. Actually, for
a bound state one expects the perturbation series to di-
verge and, in particular, for each order in the ladder se-
ries to be of comparable strength. In this paper, we will
limit ourselves to the much simpler task of comparing
the second-order three amplitude to the fourth-order box
terms.

3 The exchange of small mass scalars

For incoming scalars with mass m1 and m2 interacting by
the exchange of a third scalar with mass µ�m1,2, the in-
tegrand functions which appear in (13), i.e.

k2R�(k) = k2
2∑
s=0

R�s (k) and k
2R×(k) = k2

2∑
s=0

R×s (k)

contribute to the invariant scattering amplitude only for
values of k�m1,2. The k-dependence of these functions is
explicitly shown, for particular values ofm1,2 and µ in case
(b) of Fig. 2. In this small µ limit,

R�1 (k)
R�2 (k)

=−
E2−m2
E1+m1

E2

E1

[
µ2+2m2 (E2−m2)

µ2−2m1 (E1+m1)

]2

≈−
k2

4m21

(
k2+µ2

k2+4m21−µ
2

)2
.

This is a very small ratio, soR�2 (k) dominates. This residue
can be approximated by

k2R�2 (k) =−
E2+m2

4WE2 [µ2+2m2 (E2−m2)]
2

≈−
1

2W (k2+µ2)
2 ,

and, by making use of the elementary integrals

α3
∫ ∞
0

dk

(k2+α2)2
= α

∫ ∞
0

k2 dk

(k2+α2)2
=
π

4
,

we find that ∫ ∞
0

dk k2R�2 (k)≈−
π

8Wµ3
, (16)

which, as anticipated, is much larger than the contribution
of R�1 (k) given by∫ ∞

0

dk k2R�1 (k)≈
π

64Wm31
. (17)

Fig. 2. The k-dependence of the box and crossed residues plot-
ted for particular values of m1,2 and µ. The cases (a) and (b)
correspond respectively to the exchange of high and small mass
scalars

The corresponding crossed contributions are

k2R×1 (k) =
E1+m1

4∆E1 [µ2+2m1 (E1−m1)]
2

≈
1

2∆ (k2+µ2)
2 +

k2

8m21∆ (k
2+µ2)

2 ,

k2R×2 (k) =−
E2+m2

4∆E2 [µ2+2m2 (E2−m2)]
2

≈−
1

2∆ (k2+µ2)
2

−
k2

8m22∆ (k
2+µ2)2

.

In these expressions for the crossed residues we have kept
higher order terms because the leading contributions can-
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Table 1.We list the numerical and analytic results for the exchange of small (upper half) and high (lower half) mass scalars. The
analytic formulas for the small µ limit refer for the box diagram to the expression in the brackets of (20) and for the crossed one
to that of (21). The analytic formulas for the high µ limit refer to (25) and (26)

m1 m2 µ Analytic box Numerical box Analytic crossed Numerical crossed[
λ21λ

2
2/2π

] [
λ21λ

2
2/2π

] [
λ21λ

2
2/2π

2
] [

λ21λ
2
2/2π

2
]

1 2 10−3 −1.3087×108 −1.3087×108 −3.1250×104 −3.1232×104

1 4 10−3 −7.8524×107 −7.8524×107 −1.5625×104 −1.5617×104

2 4 10−3 −6.5442×107 −6.5442×107 −7.8125×103 −7.8104×103

1 2 10−2 −1.3059×105 −1.3059×105 −3.1250×102 −3.1067×102

10−2 2×10−2 1 −1.0358 −1.0363 −0.8049 −0.8059
10−2 4×10−2 10 −1.4497×10−4 −1.4497×10−4 −1.2648×10−4 −1.2649×10−4

2×10−2 4×10−2 10 −1.4381×10−4 −1.4382×10−4 −1.2071×10−4 −1.2071×10−4

10−2 2×10−2 10 −1.6114×10−4 −1.6114×10−4 −1.3804×10−4 −1.3804×10−4

cel. In fact,

k2
[
R×1 (k)+R

×
2 (k)
]
≈

W

8m21m
2
2

k2

(k2+µ2)
2 ,

and hence∫ ∞
0

dk k2
[
R×1 (k)+R

×
2 (k)
]
≈

π

32Wm2µ
, (18)

wherem=m1m2/W is, as before, the reduced mass.
Let us now consider the “double pole” contributions.

Since both k2 and µ2 are very small compared to m21,2, we
can approximate the expressions for A, A× and B by

A/m1 ≈−A×/m1 ≈−B/m2 ≈ C = 2E0 ,

whence

R�0 (k)≈−R
×
0 (k)≈

3k2

16m1m2 (µ2+k2)
5/2
.

Now with the help of the elementary integral

α2
∫ ∞
0

k2dk

(k2+α2)5/2
=
1

3
,

we find that∫ ∞
0

dk k2R�0 (k)≈−
∫ ∞
0

dk k2R�×(k)≈
1

16Wmµ2
.

(19)

Finally, the contributions to the scattering amplitude com-
ing from the fourth-order ladder and crossed ladder dia-
grams can be analytically expressed by using the leading
contributions coming from the single pole 2 and the double
pole 0 for the box diagram, i.e.

M� ≈
λ21λ

2
2

2π2

[
−
π

8Wµ3
+

1

16Wmµ2

]
, (20)

and from the double pole 0 for the crossed one, i.e.

M× ≈
λ21λ

2
2

2π2

[
−

1

16Wmµ2

]
. (21)

These analytic expressions are in excellent agreement with
numerical (test) calculations, made for a selected choice
of masses. These numerical results have been obtained by
using directly (13), i.e. without any approximations. This
is shown in the upper part of Table 1, for µ�m1,2, in
which by “analytic box” and “analytic crossed” we mean
the expressions in the brackets of (20) and (21).
Comparing now the fourth-order total scattering

amplitude,

M�+M× ≈−
λ21λ

2
2

16π

1

Wµ3
, (22)

with the one boson exchange amplitude (7), we find that
the fourth-order amplitude is greater than or comparable
to the second-order amplitude when

λ1λ2

16πWµ
≥ 1 . (23)

By using the effective dimensionless coupling strength for
the Φ3 Yukawa interaction, see (6), the previous condition
becomes

g2eff
4π
≥
µ

m
, (24)

which exactly reproduces the Hulthen inequality given
in Sect. 1.
The fourth-order terms considered significantly modify

the “effective” potential in the calculation. As shown by
Gross [4] the potential added to the tree diagram Yukawa
is given by

V2µ(r) =
1

8π

(
g2eff
4π

)2 ∫ ∞
2µ

dz√
z2−4µ2

exp[−zr]

r
.

This represents an integral over higher mass (> 2µ) ex-
changes. It implies a significant addition to the Yukawa
case. Higher order terms will also produce modifications.
We expect that the basic (underlying) Yukawa interac-
tion should become insignificant as we approach the bound
state inequality, after which the perturbation series di-
verges. If the Yukawa is indeed “smothered” out, it is
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somewhat surprising that the above bound state inequal-
ity is exactly the same as that given by the non-relativistic
Hulthen.
Finally, there is an important point, made by Gross [17],

that we wish to recall about this approach. The perturba-
tion series (ladder diagrams) considered are relativistically
invariant. For small µ the loop momentum is also small,
on average, and consequently the relativistic corrections
are small. These corrections are associated principally with
the double pole contributions. However, for this particular
model, the double pole contributions of the box and crossed
diagrams cancel to leading order (see the above approxi-
mate equations). This observation will be relevant for our
conclusions.

4 The exchange of high mass scalars

We now proceed to the original part of this work. We con-
sider the case of large µ exchange, i.e. when µ�m1,2. We
cannot use the approximations used in the previous sec-
tion, based on small loop momenta and which conveniently
approximated the square root terms by polynomials. In
this case the average loop momenta even exceeds µ. Fur-
thermore, if one considers the full residues given in Sect. 2,
one notes that they contain poles for real positive k. The
R�1 (k) residue has a pole for

µ2−2m1 (E1+m1) = 0 .

The R�0 (k) residue has one when

A= 0⇒ 2E0m1 = µ
2 .

We shall now argue that these pole contributions cancel.
First we observe the non-obvious fact that these singular-
ities occur at the same value of k, i.e. at

ks = µ

√(
µ

2m1

)2
−1� µ .

This equation confirms their absence for the case consid-
ered in the previous section, since the value of k at the pole
becomes complex for small µ. On the other hand, there are
no pole contributions in the crossed residues. The cancel-
lation of the box poles can be shown both analytically and
numerically. We will not give here the analytic proof de-
rived from a Maclaurin series expansion of the box terms
about ks.
The numerical argument is essentially based upon

Fig. 3. In this figure (drawn for an arbitrary choice of
masses compatible with our limit) we plot the ratio

R1(k)+R2(k)

R0(k)

separately for the box and crossed terms with a change of
sign for the crossed terms for clarity of the figure. The re-
gion plotted in k includes the pole value ks. The curves
are essentially identical. The pole terms in the numerator

Fig. 3. The plots refer to the ratio of R1(k) plus R2(k) and
R0(k) for the box and crossed terms. For clarity the crossed
terms are plotted with a change of sign. The curves are es-
sentially identical and for k ≥ µ the sum of the three residues
cancel

and denominator of the box ratio have canceled, resulting
in a smooth curve. Indeed these plots show that there is
no observable difference in the sum of the box and of the
crossed residues. Furthermore, for k > 0.5µ the ratio tends
rapidly to one or minus one as the case may be. This means
that the the sum of the three residues cancel not only any
pole contributions, but cancel tout-court for k ≥ µ. This
occurs separately for both the box and crossed sums and
consequently for the total sum. Another conclusion based
upon Fig. 3 is that for k� µ

R1(k)+R2(k)�R0(k)

separately both for the box and crossed terms. Numeri-
cal trials have lead us to conclude that integratingR1(k)+
R2(k) in k up to µ/2 yields an excellent approximation to
the full integration over all three terms. This is useful, not
so much for the numerical calculations as for the deriva-
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tion of a closed expression for the box and crossed diagram
contributions. In Table 1 (lower half) we list the numer-
ical and analytic results based upon the above heuristic
rule. The agreement is very impressive. The analytic for-
mulas we used for this table are given below and were de-
rived as follows. First note that the poles at ks lie outside
our truncated integrated region (k < µ/2), so that the in-
tegrals can be performed using elementary formulas. We
start with the following simplified expressions for these
residues, in which we have dropped, where possible, the in-
coming scalar masses compared to µ:

k2R�1 (k)≈
E1−m1
4WE1µ4

,

k2R�2 (k)≈−
E2+m2
4WE2µ4

,

k2R×1 (k)≈
E1+m1
4WE1µ4

,

k2R×2 (k)≈−
E2+m2
4WE2µ4

.

Consequently,

k2
[
R�1 (k)+R

�
2 (k)
]
≈−

1

4Wµ4

(
m1

E1
+
m2

E2

)
,

k2
[
R×1 (k)+R

×
2 (k)
]
≈−

1

4∆µ4

(
m2

E2
−
m1

E1

)
.

The integrals up to µ/2 yield

∫ µ/2
0

dk k2
[
R�1 (k)+R

�
2 (k)
]

≈−
1

4Wµ3

(
m1

µ
arcsinh

µ

2m1
+
m2

µ
arcsinh

µ

2m2

)
,

∫ µ/2
0

dk k2
[
R×1 (k)+R

×
2 (k)
]

≈−
1

4∆µ3

(
m2

µ
arcsinh

µ

2m2
−
m1

µ
arcsinh

µ

2m1

)
.

Finally,

M� ≈
λ21λ

2
2

2π2

×

[
−
1

4Wµ3

(
m1

µ
arcsinh

µ

2m1
+
m2

µ
arcsinh

µ

2m2

)]
,

(25)

and

M× ≈
λ21λ

2
2

2π2

×

[
−
1

4∆µ3

(
m2

µ
arcsinh

µ

2m2
−
m1

µ
arcsinh

µ

2m1

)]
.

(26)

In the lower half of Table 1 (high mass exchange) by “ana-
lytic box” and “analytic crossed”, we mean the expressions
in the brackets of (25) and (26). The numerical calculations

have been made for the sum of all the three residues and
without an explicit cut-off in k.
For a more compact expression, we now add these “ana-

lytic” results after approximating the arcsinh(x/2) by lnx,
since all our x are very large. After some algebra, we obtain
the following formula for the fourth-order contributions to
the invariant amplitude:

M�+M× ≈
λ21λ

2
2

2π2

[
−
1

4µ4

(
ln
µ2

m1m2
+
1+ρ2

1−ρ2
ln ρ

)]

=−
λ21λ

2
2

8π2
1

µ4

(
ln
µ2

m1m2
+
1+ρ2

1−ρ2
ln ρ

)
,

(27)

with ρ =m1/m2. As an aside we note that this result
is symmetric in the incoming masses m1 and m2. This
natural result is not obvious in the expressions for the
fourth-order diagrams. The condition for the existence for
a bound state in the high mass exchange case thus becomes

g2eff
2π2
≥
µ2

m1m2

/(
ln
µ2

m1m2
+
1+ρ2

1−ρ2
ln ρ

)
. (28)

Form1 =m2 =m (ρ= 1) this inequality becomes

g2eff
2π2
≥
µ2

m2

/(
ln
µ2

m2
−1

)
. (29)

Form1�m2 one obtains
(
ln
µ2

m1m2
+
1+ρ2

1−ρ2
ln ρ

)
→ 2 ln

µ

m2
,

and hence for a bound state to exist (whenm1�m2� µ)
one must have

g2eff ≥ π
2 µ

m1

µ/m2

ln[µ/m2]
. (30)

Since µ/m2� ln[µ/m2], this is an even stronger condition
on the coupling strength than the low mass exchange con-
dition extrapolated to high mass exchange,

g2eff ≥ 4π
µ

m1
. (31)

We conclude that, in our toy model, bound states for high
mass exchanges do not exist unless the effective coupling
constant becomes even stronger than that required by the
Hulthen condition.

5 Conclusions

We have presented in this paper a calculation of the
forward scattering contributions of the fourth-order box
and ladder diagrams for a particular scalar field model.
From these results the condition on the effective coupling
strength for the existence of a bound state has been ob-
tained. The requirement imposed was that the sum of these
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fourth-order terms equal or exceed the tree diagram con-
tribution. For small exchanged mass (µ�m1,2) we have
re-obtained the result of Gross [4, 17]. In the opposite limit
of high exchanged mass (µ�m1,2) we have derived an in-
equality for a bound state, albeit as an approximate result.
It agrees very well with our numerical integral results for
appropriate (but otherwise casually chosen) sets of selected
mass values.
A first observation to be made is that the two inequal-

ities, for low and high µ/m, are not the same. One should
therefore not extrapolate either outside of their respective
domains. In this particularmodel, the conclusion is that, as
the exchanged mass increases, the effective coupling con-
stant must grow even faster than

√
µ/m for a bound state

to exist. This is a toy model so we have no explicit (physi-
cal) limitations, but of course large coupling constants are
in conflict with the very perturbation series upon which the
method is based. However, this is not what we expect to
happen for interacting spinors. It is perhaps useful to recall
here, more explicitly, some of the arguments upon which
our expectations for spinors are based. Amongst the lowest
order relativistic corrections to the Schrödinger equation is
that which gives rise to the renowned Darwin term [3],

e

8m2
∇2A0(r) . (32)

This term simply adds onto the potential term eA0(r).
When the electrostatic potential is a Coulomb potential
produced by an opposite charged point (massive) source,
we obtain

e2

8m2
δ3(r) . (33)

This contributes only to the s-wave, but it is essential for
the transformation of the relativistic correction of the hy-
drogen energy spectrum into one which depends only upon
j (the total angular momentum) in addition to n (the
principal quantum number). This is a result that comes
automatically in the Dirac equation. We note that since
the Darwin term is essential to the s-wave spinor bound
states, these are technically “relativistic” under our defin-
ition (see Sect. 1). However, when this same term is calcu-
lated for a Yukawa potential, we observe that

∇2
exp[−µr]

r
= µ2

exp[−µr]

r
−4πδ3(r) . (34)

The first of these terms augments the Yukawa potential
and amplifies the effective coupling constant,

g2eff→ g
2
eff

(
1+

µ2

8m2

)
. (35)

For µ�m,

g2eff→ g
2
eff

µ2

8m2
, (36)

and this is just what is needed to “invert” the inequality
condition for a bound state from

g2eff >
µ

m
→ g2eff >

8m

µ
. (37)

The latter inequality is a weak constraint, easily satisfied,
sincem� µ. Of course, this argument is flawed by the fact
that limiting oneself to the lowest order relativistic correc-
tions assumes that they must be small, or at least that the
higher order corrections can for some reason (such as can-
cellations) be totally ignored. Nevertheless, this result does
suggest that relativistic effects could be very important for
the bound state inequality. In the specific model treated
in this paper Gross has shown that the relativistic correc-
tions for small µ/m come from the poles in the double pole
contributions [4]. Now the box and crossed contributions
for these double poles cancel in this model. It is there-
fore a situation very different from the case of interacting
spinors. Furthermore, the Klein–Gordon equation does not
have a Darwin type term, so Yukawa coupling amplifica-
tion has not been shown to occur for interacting scalars. On
the contrary, the results of this paper demonstrate specif-
ically that it does not occur. It is our intention to consider
a more interesting model with incoming spinors exchang-
ing bosons in a future study.
A possible alternative approach in determining the in-

equality condition for a bound state is to first derive
a corresponding two-body differential equation (Bethe–
Salpeter in this case of scalar interactions) from which
not only the existence of a bound state may be derived
but indeed the full bound state spectrum. However, our
procedure is the only one available for cases in which the
two-body equation is unknown [4].
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